Microbes are widely used in pharmaceutical, pesticides, food industry, energy, and a series of innovative applications. Through the research on microbe genome, functional genes related with new special enzyme, important metabolic processes, and metabolite are constantly being discovered and applied to production as well as the transformation of traditional industry and technology. It has a certain value in the application of bio-pharmaceutics, pollution control, energy, chemical, and biological manufacturing industries. Early strain transformation mainly concentrate on random screening and simple rational screening, but the disadvantages which included time-consuming, laborious, and heavy workload and no orientation of mutagenesis in traditional methods were gradually exposed as time went on. With the development of modern molecular biology techniques, many new methods for strains breeding appeared with directionality and positive mutation. The emergence of CRISPR-Cas9 technology has greatly promoted the accuracy and efficiency of microbe genome editing.

Research Strategy

Sequence confirmation

  • Cloning sequencing
  • NGS and analysis

SgRNA design

  • Customized genome sgRNA design

Vector Construction of CRISPR-Cas9 sgRNA system

  • Vector synthesis and construction of customized sgRNA and Cas protein, to achieve tandem assembly in 8 sgRNAs at most
  • Design and synthesis of donor Vector


Microbe genome editing

  • Genome editing of Saccharomyces cerevisiae
  • Genome editing for other strains (please consult technicians)

Verification of editing success rate

  • Sequencing verification


  • One-stop Service
    Synbio Technologies provides complete solutions from sgRNA design, synthesis and vector construction to microbe genome editing.
  • Patented Technology Platform|
    Synbio Technologies has patented sgRNA design software that provides efficient and accurate design for multiple species.
  • Syno® 2.0 Gene Synthesis Platform
    The sgRNA and Cas9 vector can be customized to achieve tandem assembly in 8 sgRNAs at most.

[1].Jiang Y, Chen B, Duan C, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Applied and environmental microbiology,2015, 81(7): 2506-2514.
[2].Huang G, Zang B, Wang X, et al. Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells[J]. Actabiochimica et biophysica Sinica, 2015, 47(12): 981-987.